
Multiply it!

Reinko Venema.

Introduction. A long time ago when I was a student I wanted to look how
far you could come with generalizing the complex multiplication to higher di-
mensions. The first two or three months I did not make much progress because
I constantly tried to lay isomorphisms between n dimensional space and the
complex plane.
Only when I realized that the complex multiplication is nothing special (later
we will see it has a parameter T = −1 when we parameterize multiplications)
serious progress did set in.
When I write the complex plane is ’nothing special’ this should not be taken as
a negative thing, it simply means there is a whole lot more out there that is at
least as beautiful as our well known complex plane...
This article should not be viewed as a comprehensive treatment of the general
n dimensional situation, it is only a step up so it could be used in creating
fractals. So in theory we would only need functions like f(X) = X2 + c in the
n dimensional case but with the same easy we take higher polynomials but also
well known functions like exp, log, sin and cos and so on and so on.

As usual: Some things about notation or ’how to write it down’. In
n dimensional real space we use the natural coordinate system with unit basis
vectors.
The first axis is always the real number system (the real number line). Since we
know the real line is closed under addition and multiplication it is handy not to
start counting the basis vectors with e1 but with e0

Therefore the basis we use is given by n basis vectors {e0, e1, · · · , en−1}.

Now every point X can be written as:

X =
n−1∑

j=0

xjej .

In order to understand how easy it is to take the derivative of X (here we talk
about the identity function f(X) = X to be precise) we observe:

∂X

∂xj
= ej or, if you want

∂f

∂xj
= ej .
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Furthermore the natural basis is spanned by powers of the second basis vector
e1, for 0 ≤ j < n we have:

ej
1 = ej .

With this you automatically get for i + j < n− 1:

eiej = ejei = ei+j .

And so for every two points X and Y you have XY = Y X (the symmetry
condition is also needed when you want to have derivatives in the lazy way).
Now we have enough ammo to parameterize the multiplication in n dimensions;
the parameter is always written as a capital T and it is simply the n-th power
of the second basis vector:

T := en
1 =

n−1∑

j=0

tjej .

In the complex plane you can find the derivative of a function rather simple
because it does not make any difference from what direction you take the limit
for the derivative,in n dimensional space we want the same ease and therefore
the real component of the parameter T cannot be zero:

t0 6= 0.

Another way of understanding this ’technical condition’ that t0 cannot be zero
is by observing that allowing it to be zero, you only have some direct sum of
two spaces. The complex plane does not work that way and in n dimensional
space it does not work that way. (The technical condition guarantees that e1,
and thus all it’s powers, has an inverse.)

To sum it up: We use the standard natural basis with unit basis vectors,
multiplications are parameterized by T (of course T is only a point in our n
dimensional space) and in order to have the easy life we need t0 6= 0.

Generalizing the Cauchy Riemann equations. In the theory of functions
on the complex plane, a function has to satisfy the so called Cauchy Riemann
equations in order to be an analytic function.
There are two ways of writing down the Cauchy Riemann equations, a clumsy
one and an elegant one.

Lets first do it clumsy:
A complex number z is written in real numbers like z = x+ iy and so a function
from the complex plane to itself can be written as:

f(x, y) = u(x, y) + iv(x, y)

In that case f is analytic if:

∂u

∂x
=

∂v

∂y
, and

∂v

∂x
= −∂u

∂y
.
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If you see these for the first time in your life, rather likely you need over 10
seconds to grasp what is going on.

But it is very easy to see what is going on if you write it like:

∂f

∂y
=

∂f

∂x
i

Simply because
∂z

∂x
= 1, and

∂z

∂y
= i.

So the Cauchy Riemann equations are very simple if you write them down
in an easy to understand way (with already the basics of the chain rule for
differentiation in it).
For a function f from n dimensional space to itself this translates to:

∂f

∂xi
=

∂f

∂x0
ei.

And these are the generalized version of the Cauchy Riemann equations.
From the above you can find the relations between the diverse components

∂fi

∂xj
,

since there are n2 of these it does not bring much insight.
While simply multiply the derivative by ei is a very simple thing to do...

Hence it makes sense to write the derivative f ′(X) as follows:

f ′(X) =
∂f

∂X

def
:=

∂f

∂x0
.

To put it simple: You can find the derivative via differentiating into any kind
of allowed direction, but most simple is just to differentiate into the direction
of the real axis (the direction of the real numbers).

You might think there could be a problem if you have found a vector direction
(a point) that is not invertible. Because if you try to calculate the derivative
via:

lim
X→A

f(X)− f(A)
X −A

,

could there be a problem if you cannot divide by X −A?
There is no problem at all, the combined collection of non invertible elements
has always lesser dimension than n and as such is thin in n dimensional space.
If you have found a non invertible element, say N , in that case all real multiples
are also non invertible so you can calculate a unit vector in that direction, say
eN .

3



If you want to know the derivative in the N direction at a point X you simply
calculate f ′(X)eN ...
(The collection of non invertible points form an ideal in the n dimensional space
under multiplication.)

The obvious relation with matrix multiplication. Once you have found
your parameter T for a multiplication, it is very easy to make a matrix repre-
sentation for this. Before we do that lets look at two equivalent ways to view
the multiplication of an nxn matrix with a column matrix (a point X written
vertical). You can view a matrix as rows stacked upon each other:

M =




R0

R1

...
Rn−1


 and MX =




< R0, X >
< R1, X >

...
< Rn−1, X >




In this < R0, X > means of course the standard inner product.
If X is one of the basis vectors ei you will get the i + 1 column of the matrix.
Equivalent a matrix is a bunch of columns next to each other:

M =
(
C0 C1 . . . Cn−1

)
so MX =

(
C0 C1 . . . Cn−1

)



x0

x1

...
xn−1


 =

n−1∑

i=0

Cixi.

The above is so elementary, it is in every first year of university or similar
education. It is almost an insult to the reader to even post it. Therefore we
now craft the matrix representation M(X) of a point X. That is also very easy:

M(X) =
(
X Xe1 Xe2 . . . Xen−1

)

I would like to make no difference between a point X written as (x0, . . . , xn−1)
or as a column matrix in order to avoid constantly taking transposes that make
the text hard to read. So M(X) contains columns, for example the second
column can be calculated as next:

Xe1 =




0
x0

x1

...
xn−2




+ xn−1T.

Furthermore once you have a matrix representation you can go back via M(X)e0

because X is always the first column of the matrix representation.
Because most math computer programs have ready to use matrix algorithms
this saves a lot of work.
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More things that are utterly obvious:
M(XY ) = M(X)M(Y ) and X has an inverse if det(MX)) 6= 0 and you can use
your computer program to calculate the inverse via:

X−1 = M(X)−1e0.

I am sorry I have to insult you further, but it is also obvious that M(e0) = 1
(the unit matrix) and that

M(e1) =
(
e1 e2 . . . en−1 T

)

A simple example in the plane, take T = −0.6 + 0.4e1. So now our
parameter e2

1 = T is as above, remark I have chosen T of unit length.
The matrix representation of a point X = x0 + x1e1 now becomes:

M(X) =
(

x0 x1t0
x1 x0 + x1t1

)

The determinant becomes det(M(X)) = x2
0 + t1x0x1 − t0x

2
1 and in our simple

example this becomes:
det(M(X)) = x2

0 + 0.4x0x1 + 0.6x2
1.

It is not hard to show the determinant never vanished when X 6= 0, I think (or
I hope) that the next method gives the least work:
A non invertible point is always on a linear subset thus on a line through zero.
Just substitute x0 = 1 and proof it cannot be solved;
Substitute x1 = 1 and do the same.
Of course remark that both lines x0 = 1 and x1 = 1 coincidence with all lines
through the origin (expect for both x0 and x1 axis who were non invertible by
definition).

With this parameter T you can also solve X2 + 1 = 0, if I made no calcu-
lation error the solution is given by x0 =

√
1/14 and x1 = −5

√
1/14.

Exercise: Check if indeed I did not make a calculation error...

It is now also easy to give an isomorphism between the complex plane and
our plane with parameter T , since in the complex plane the solution of z2 = −1
is usually written as i our isomorphism takes the from:

φ(1) = e0(= 1 of course) and φ(i) =
√

1/14− 5
√

1/14e1.

Now we have our isomorphism (I did not proof φ(z1 + z2) = φ(z1) + φ(z2)
and φ(z1z2) = φ(z1)φ(z2)!) we can borrow the norm from the complex plane
via constructing the inverse of φ and say |X| := ||φ−1(X)||. Where of course
||z|| = ||x + iy|| =

√
x2 + y2.

5



Newton mechanics: Velocity and force fields, kinetic energy (weird
stuff). This paragraph contains weird mechanics because (according to my
humble opinion) it does not make much sense to study liquid floods (or gasses
or plasma) in lets say a 10 dimensional space. I consider this mathematical
fantasies but the results are rather nice so why not write them down?
Lets do it in Newton’s dot notation (the dot only means differentiation to time).

.

X= f(X).

This simply means the next: at every point X we hang a velocity vector f(X)
where f is any given analytical function.What is in that case the acceleration?
Well:

..

X=
∂

∂t
f(X) =

∂f

∂X

∂X

∂t
= f ′(X)

.

X= f ′(X)f(X).

Thus:
..

X=
∂

∂X

1
2
f(X)2.

If we write v and a for velocity and acceleration and multiply left and right with
a constant m we get:

ma =
∂

∂X

1
2
mv2.

At last writing F = ma and Ek = 1
2mv2 this becomes:

F =
∂

∂X
Ek.

In words this would be:
The force field is the spatial derivative of the kinetic energy.
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