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M otivation

o .

olving simple differential equations:

y = ky
y = CeM ify > 0

Exponential Functions:
-constant growth rate
-unbounded growth

Logistic Growth Equation:
-bounded population growth
-decreasing growth rate
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M otivation

-

Growth rate = Derivative:

y/ — ]{Ty — Ok€kt (not constant)

/

The ratio J _ k 1S constant.

Y

But this is the growth constant, not the growth rate.
The growth rate is a multiplicative growth factor.

l.e. what you would multiply by to get the "next" function
value.

A population that doubles each year has a growth rate of 2.
A population with a growth constant & has a growth rate of e*.
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Additive vs M ultiplicative

- .

ADDITIVE MULTIPLICATIVE

additive slope multiplicative slope

linear functions constant exponential functions constant
f(x) =mx+10 g(z) = Ca”

fi(x) =m g*(r) = a

fle+1)=fla)+ f(z)  gla+1)=g(z) g"(z)



Additive vs M ultiplicative

ADDITIVE

additive slope

linear functions constant
f(x) =mz+b

f(z) =m
fle+1) = f(z) + f(x)

f(x+h)— f(z)
h
-addition

-subtraction
L -multiplication

=

MULTIPLICATIVE
multiplicative slope
exponential functions constant
g(z) = Ca”
9" () =a

g(x+1) = g(x) - g*(x)

(g(:z: + h)) h

9(x)

-multiplication

-division

-exponentiation J




Multiplicative Derivative

flz+h) - flz)

fll) = lim h
o (fl@Hh)\T
fiw) = flfi%( @ )

Note: f*(x) is only defined where f(z) # 0.

Other Notation: d f

dx
Higher Order Derivatives:  f**(x)
n" Derivative: £ ()

o



Simplifying Formula

. (f(:v+ h))i

=0\ f(@)

. (fle+h)  f(z) ) g

lim _J\E)
h—0 ( f(:l?) f(CL’) + 1

lim (14 L&) = F(@) AR T@ T
0 ( T W )

I _ f(zt+h)—f(z) 1

1] 1 f(x =+ h) — f(x) f($+fiz(;c—)f(a;) h f(z)
& ( W )

[ (=)
e flz

o(Inolf])(x) J



Differentiability
- o

F*(x) = eelfD(@)
Similarly, £*(z) = eof") (@) = c(nolf)"(z)

If f(z) # 0 and f™(z) exists, then £*(")(z) exists and
7 () = e(nel )™ (@) forn =0,1,2,...

Note: Forn =0 £*O)(z) = emolfD®@) = | £(2)]

For f : A — R non-zero:
f differentiable at x or on A — *differentiable at x or on A.

o -



Differentiability

For f : A — R non-zero:
f *differentiable at x or on A — differentiable at x or on A.

f *differentiable at x or on A < differentiable at = or on A.

o



Continuity
-

*Differentiability implies continuity

o=t (22)

We want lim f(z) — f(c¢) =0

T—C

For f(c) # O:
lim f(z) = f(c) =0 <= lim

(
=t (f 1) =0
N =l (f) =



Continuity
5

*Differentiability implies continuity

ro=m ()
We want lim (?ii;) 1
o (49) = ()

- [(58)”
0
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Continuity

Continuity does not imply *differentiability

flz)=|z|+1 at

r =0




Constant Functions

-

If f(x)=c#0o0n (a,b), then
f (z) = eMnlel)” = 0 = 1 on (a,b)

Conversely, If f*(z) =1 on (a,b), then

(@) = €J;,<(;>) =1 implies f(x) =c#0

Constant functions:

additive derivative=0 (additive identity)
multiplicative derivative=1 (multiplicative identity)



Derivative Rules

Sum Rule
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Mean Value Theorem

-

If f(x) IS continuous on |a, b] and *differentiable on (a, ),
then there exists a < ¢ < b S.t.

o ()"

=

This follows from the Mean Value Theorem
applied to (Ino|f]) (x)

o -



Monotonicity

f: (a,b) — R *differentiable.



Relative Extrema

-

f: (a,b) — R twice *differentiable. T
If f has a local extremum at ¢ € (a,b), then f*(c) = 1.
If f*(c) =1and f**(c) > 1, then f has a local minimum at c.

If f*(c)=1and f**(c) < 1, then f has a local maximum at c.



Approximation

-

f'(c) = slope of tangent line at = = ¢
f*(c) = base of tangent exponential curve at z = ¢

Linear Approx: L(z) = f(e) + f'(c)(z — ¢)
Exponential Approx: E(x) = f(c) - f*(c)*—¢
Note:



Approximation

fExampIel flx)=2% at c=3

5\ T—3
L(z) =9+ 6(z — 3) Blz)=9- (65)




Approximation

-

|7Example 2: f(x) =sin(x) at ¢ = G

1
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Multiplicative Integrals
-

Let P be a partition of [a, b).

Riemann Sums: Zf ¢i) (i — xi_1)

’I’L

* Products: H]f ¢; )| Ti-1)

If this product converges, we say fis *integrable and

b
denote the limit by / F(a)

o -



Multiplicative Integrals
-

Let P be a partition of [a, b).

Riemann Sums: Zf ¢i) (i — xi_1)

’I’L

* Products: H]f ¢; )| Ti-1)

If this product converges, we say fis *integrable and

b
denote the limit by / F(a)

[t =

o -



Multiplicative Integrals
-

Let P be a partition of [a, b).

Riemann Sums: Zf ¢i) (i — xi_1)

* Products: H]f ¢; )| Ti-1)

If this product converges, we say fis *integrable and

b
denote the limit by / F(a)

/ @ =1 and / ) =

o -



Multiplicative Integrals
-

Let P be a partition of [a, b].

Riemann Sums: Zf ¢i) (i — xi_1)

* Products: H]f ¢; )| Ti-1)

If this product converges, we say fis *integrable and

b
denote the limit by / F(a)

[t =1 and /baf<x>dx</abf<w>dx>l

o -



Antiderivatives

/kd%‘:w for k>0

[ n dCIZ ka:n+1
/ ekLU i| p— Oe n—+1

/ ecos(az)} T _ psin(@)




Simplifying Formula
-

If fIs positive and Riemann integrable on |a, b, then f is

*Integrable and
/ )4 = el melf)(@)da

This follows from

P(f,P) = o2i—i(Inolf)(ci)(zi—wi1) _ S(nolf],P)

=

Conversely, If f Is Riemann integrable on |a, b| then

/a " (e)de = In ( / ’ (ef<w>)df”>

o -



Integration Rules
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Fundamental Theorem

-

If f:]a,b] — R Is *differentiable and f* is *integrable

’ * da:_f(b)
[t =5

=

Let f : |a,b] — R be *integrable and F'(x / f(t)

If f IS continuous at = € |a, b], then F' Is *differentiable at x
and F*(x) = f(x).

o -



Taylor Products

-

Taylor Series:

i
)

Remainder terms go to 0 and 1 respectively as n — oo

o



Taylor Products

D“d Order Approximation
2 (:,c;?)k
Byz) = [ |FP@] ”

k=0




Taylor Products

fExampIel flr)=2% at a =2

—1 (:c—2)2

Eo(z)=4-e""2.e2 " 2
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Taylor Products

fExampIel flr)=2% at a =2

(z—2)3

Fs(x) = Ea(x) - [e%} "




Taylor Products

fExampIel flr)=2% at a =2

(z—2)%
-3

FEy(x) = E3(x) - {67} “
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Taylor Products

fExampIel flr)=2% at a =2

Es(x) = Ey(x) - [e
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Taylor Products

-

|7Example 2: f(r) =sin(x) at a = =

1
2




Taylor Products

-

|7Example 2: f(r) =sin(x) at a = G

By(x) = Ba(x) - & a

3\/5




Taylor Products

-

|7Example 2: f(r) =sin(x) at a = G

(=-%)"
E4(gj) — ES(Q;) ) [6_80} 24

3\/5




Taylor Products

-

|7Example 2: f(r) =sin(x) at a = G

(«-%)°

Es(x) = Ey(x) - {6352\/5} =

3\/5




Other Calculi

If ¢ is a bijective function, define Tderivative and Tintegral by



Other Calculi

If ¢ is a bijective function, define Tderivative and Tintegral by

@) =¢ (e o) (2)

F*(x) = emelfD(@)



Applications

Support for Newtonian Calculus
Semigroups of linear operators
Multiplicative metric spaces
Multiplicative differential equations

Multiplicative Calculus of variations

Student projects

-
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Multiplicative M etric Spaces

-

Define multiplicative absolute value for z ¢ R*

) x ifz > 1
‘w‘ — N1 .
- |f£l?<1

Define the multiplicative distance for z,y € R

*

T
d*(z,y :‘—
(x,y) ;




Multiplicative M etric Spaces

o .

Define the multiplicative distance for z,y € R

*

)
)
) =d*(y,z) Vz,y € RT
4. d*(z,z) < d*(z,y)d*(y,z) Va,y,z € RT



Multiplicative M etric Spaces

-

Define the multiplicative distance for z,y € R

*

X
d* L,Y :‘_
@) =17

Multiplicative convergence in R
(20)0] 1 < Ve>0 INeN st
d*(zp,x) <1l+ec Vn>N

<— Ve>0 dN &N s.t.

ES

<1l4+e Vn>N

B :,; B
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Multiplicative M etric Spaces

A matrix A is positive if x! Ax > 0 for every n—vector x
M = set of positive (n x n)—matrices
A € M then its eigenvalues A\, \a, ..., A\, > 0

Define multiplicative norm of A

1] H Ail*

Define multiplicative distance for A, B € M

d*(A, B) = ||[AB7Y|]"
- -
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