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I heard someone say that in the year 1748 Leonhard
Euler discovered or published the very first exponential
circle any human had found.
It is known as Euler’s formulae or the Euler
identity and even in popular culture it is famous.
There are even movies where you hear people saying
weird stuff like:
The number e to the power iπ equals
minus one so God exists.
Needless to say this is completely bogus logic, it
is more like one of those religious statements that
are so often riddled with bogus logic.
But let’s not crack down on religious people, very
often scientists do that but I think that religion
is an important function of the human brain. Don’t
forget that religion also channels all kinds of moral
behaviour, moral behaviour is also a function of the
human brain, and science does not channel moral stuff
in any way.

Ok let’s sidestep all religious stuff and look at
the Euler identity once more

eit = cos t+ i sin t for t ∈ R
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This is great stuff because it relates exponentials
to trigonometry and all those sum and difference
formula’s for trigonometry is simplified significantly.
For example the Euler identity also says

eit · eis = cos(t+ s) + i sin(t+ s)

And from that it is always easy for the human brain
to reconstruct all those sum & difference formula’s
from the field of trigonometry.
——————————

So far for the complex plane C.
In R3 we found two exponential circles
depending on what kind of multiplication we used.
Both exponential circles were written as

f(t) = eτt.

And although that looks simple in notation, the
math is found in the ′τ ′ stuff.
In 3 dimensions with the complex multiplication,
both imaginary components had to be the same.
Therefore τ was like

τ = (j + j2)
2π

3
√
3

We observe that τ looks a bit complicated
but therefore f(t) was so simple to understand
because it simply rotated over the dimensions.

f(0) = 1, f(1) = j and f(2) = j2

And we identified the set {1, j, j2} with the
basis vectors (x, y, z) in R3 about 23 years
ago as follows:

1 = (1, 0, 0)
j = (0, 1, 0)
j2 = (0, 0, 1)

In the update from 30 Jan this year I describe an
important principle known as the pullback principle.
With the pullback principle you can calculate the
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periods of exponential circles and curves in
higher dimensions while using the complex plane C.

Let me illustrate that for the τ standing above:
In R3 we have for the complex multiplication
that j3 = −1 but in the complex plane C
these are roots of minus unity.
We now ’pull back’ our j + j2 to C via
the famous map φ and map both imaginary parts
as follows

φ(j) = eiπ/3 and φ(j2) = e2iπ/3

And then we simply add

φ(j) + φ(j2) = eiπ/3 + e2iπ/3 =
√
3 · i

We do this because we want to know the period of
e(j+j2)t in R3 and if we pull that back to C we get e

√
3·it

and the latter has of course a period in time of

2π√
3

That explains why I choose τ to be

τ = (j + j2)
2π

3
√
3

so that it was guaranteed that the exponential circle
f(t) = eτt has a period of 3.

Let us do exactly the same analysis for the
circular multiplication in R3, so now
the rotation over the basis vectors goes like j3 = 1.
Now the triplet {1, j, j2} are the roots of unity,
so if we pull the imaginary parts back to C we get

φ(j) = e2iπ/3 and φ(j2) = e4iπ/3

In order to get something completely imaginary in C
we now have to subtract stuff like in

φ(j)− φ(j2) = e2iπ/3 − e4iπ/3 =
√
3 · i
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This perfectly explains why for the circular
multiplication a good version of τ looks like

τ = (j − j2)
2π

3
√
3

——————————
I want to close the overview for R3 so as
a final end to this subpart let’s write out the
explicit coordinate functions in a way just like
Leonhard Euler did in the year 1748:

eit = cos t+ i sin t

You can view this is a moving point on the unit
circle in C that is projected on the two
coordinate axis. In the case of R3 the exponential
circles eτt make the same angle with all three
coordinate axis.
Since we have made tau a little bit more difficult,
the period is now 3 time units and if we want to
capture that with cosine functions, the exponential
circle for the circular multiplication becomes

f(t) =
1

3
+
2

3
cos

(
2π

3
t

)
+
j

3
+
2j

3
cos

(
2π

3
(t− 1)

)
+
j2

3
+
2j2

3
cos

(
2π

3
(t− 2)

)
.

Recall that for the circular multiplication
we go like 1 → j → j2 → 1 etc etc.

For the complex version I made it go like
1 → j2 → −j → 1 etc etc.
That means in terms of basis vectors it goes like
(1, 0, 0) → (0, 0, 1) → (0,−1, 0) → 1 etc etc.
So the y−coordinate behave differently
because the determinant of the matrix
representation must stay one all the time.
And in R3 we have det(−X) = −det(X) because
the dimension is an odd number.
After having said that, stuff should now look like

f(t) =
1

3
+
2

3
cos

(
2π

3
t

)
− j

3
−2j

3
cos

(
2π

3
(t− 2)

)
+
j2

3
+
2j2

3
cos

(
2π

3
(t− 1)

)
.
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For myself speaking, I prefer to write it a little
bit more compact also stressing that in R3

the number α is always the center of the
exponential circles. Doing so gives

f(t) = α+
2

3
cos

(
2π

3
t

)
+ j

2

3
cos

(
2π

3
(t− 1)

)
+ j2

2

3
cos

(
2π

3
(t− 2)

)
.

For the complex multiplication in 3D this would give

f(t) = α+
2

3
cos

(
2π

3
t

)
− 2j

3
cos

(
2π

3
(t− 2)

)
+

2j2

3
cos

(
2π

3
(t− 1)

)
.

The very important sphere-cone equation
dictates what properties these coordinate functions
have and because the exponential circles are on
the unit sphere in R3 the sum of
squares add up to one.
If for simplicity we write f(t) = c0(t) + jc1(t) + j2c2(t)
we have with even more simplicity suppressing the
dependence on t

c 2
0 + c 2

1 + c 2
2 = 1

The coordinate functions must also obey the
equations of the cones. And there is an additional
equation to be full filled: the endpoints of the
three basis vectors span up a plane.
For the circular & complex multiplication that
would give additional equations like{

x+ y + z = 1 (circular multiplication)
x− y + z = 1 (complex multiplication)

For example, if we restrict ourselves to the
circular version we get {

c 2
0 + c 2

1 + c 2
2 = 1

c0 + c1 + c2 = 1

And by all standards, that is a cute result...
——————————

So far for R3, let’s now go to C3.
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There are always two ways to look at this,
you can say

C3 = R3 + iR3 so that
Z = X + iY with X,Y ∈ R3

And the other way is

C3 = C+ jC+ j2C so that
Z = z0 + jz1 + j2z2 with z0, z1 and z2 ∈ C

Depending on how you view it you get slightly
different but equivalent matrix representations
for Z ∈ C3.
As usual we look at the two possible ways for
multiplying j;
j3 = 1 is again the circular multiplication and
j3 = −1 is the complex version.

During my petite investigations into the higher
dimensional complex numbers I often used the
applets from calculator-fx.com. But for an unknown
number of months this website is off-line.

The applets from that website were highly reliable,
especially the applet for taking the log of a matrix
was good because at other websites you often got strange
results that clearly could not be right...
So I cannot give you a screenshot for further validation
of our exponential curves on C3 but if you
have access to a good applet or that expensive software
that has good routines in it, you can take the log of
the next matrix representation for j.
Let’s take the complex multiplication so j3 = −1 and
we replace in the standard 3D matrix all entries with
small 2× 2 matrices that resemble the matrix
representation on the complex plane.
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So we get a 6×6 matrix

M(j) =



0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


Again important 1: View this as an 3× 3 matrix
with complex entries, but most applets do not allow for
complex numbers from the complex plane C.
By the way, this matrix is also the matrix representation
for j from R6 as you see on inspection.
Again important 2: You should use the complex
multiplication because if you use the circular
multiplication the applet views the 6× 6 matrix
as a 3× 3 made of 2× 2 things. Why this
is I don’t know.
——————————
Anyway, to make a long story short; if you have
such an applet for matrix log, the result is that
when viewed inside C3 we have

log j = τ/2 + iπα

This goes only for the complex multiplication on R3

because of determinant problems, the circular version
simply has

log j = τ because there detM(j) = 1

Of course both multiplications have their own
version of τ and α from R3.
So this is our new ′τ ′ suited for C3, but
it would be highly confusing to write stuff like

τ = τ/2 + iπα

where on the left hand side it is τ from C3 and
on the right hand side the τ from R3.
Also I always try to avoid all those difficult to read
indices like τC3 or τR3 that professional professors

7



use so often...
At this point in time it looks reasonable that
every time we go from some Rn via complexification
to Cn, to use the symbol θ because that
also starts with a t.
By the way, do you know why I named it τ−calculus
in the first place? That is because in my Dutch home
language τ rhymes on touw and touw means rope.
The ’rope’ is used to come from 1 to j when
calculating the log j like in

τ =

∫ j

1

1

X
dX

Ok, now we have θ−calculus and I claim
that as we view C3 as a complexification of the
two multiplications on R3, that we have

θ = τ/2 + iπα

Therefore inside C3 there are two exponential
curves that can be written as

f(t) = eθt = e(τ/2+iπα)t

In the update on a new Cauchy integral formulae
using the exponential curve on C3 from
18 Jan this year, see page five, I made a factorization
of the exponential curve. But that was for the
complex multiplication.
In this overview I will give them for both the
complex & circular multiplication.
It is not hard to see that

f(t) = eθt = e(τ/2+iπα)t = eτt/2 · eiπαt

And it is also not hard to see that the ’old’
exponential circle eτt is now run at
half the original speed by dividing τ by 2.
First we look at the circular multiplication.
This means that
eτ/2 is halfway 1 and j,
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e3τ/2 is halfway j and j2,
e5τ/2 is halfway j2 and 1.

Let us recall what we know about the opposite
points on the exponential circle in R3:
First the general geometric stuff; let A and B
be two points or two vectors in an arbitrary
vector space, what point is halfway A and B?

This is high school math, if we denote the center
with C we get

C =
A+B

2

This means that given an A and a C, we can find B;

B = 2C −A or vice versa A = 2C −B

That gives:
eτ/2 is halfway 1 and j and is opposite to j2,
e3τ/2 is halfway j and j2 and is opposite to 1,
e5τ/2 is halfway j2 and 1 and is opposite to j.

Since the number α is the center of both
exponential circles in R3 we have:

eτ/2 = 2α− j2

e3τ/2 = 2α− 1
e5τ/2 = 2α− j.

We now have the left half of the factorization
of f(t) = eτt/2 · eiπαt.

The right hand side is very surprising, I still
have to find a good analytical proof for it
but with any good applet for the exponential
matrix you can find it. But that is not a
real proof, anyway call me old fashioned
but if I can avoid machines in a proof I
always do that...
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But there is a screen shot on my computer
that says using some applet for exponential
matrices:

eiπα = −(2α− 1)

As a direct consequence of that we have
this highly familiar looking

e2iπα = 1

Just like in the complex plane C we have
that e2iπ = 1, in C3 we need an extra factor α.
Remarkable this goes for both multiplications.

Let’s craft a proof for this cute looking
identity: e2iπα is the square of eiπα,
so all we have to do is to square −(2α− 1).
Using the fundamental property α2 = α the
simple calculation becomes
[−(2α− 1)]2 =
(2α− 1)2 =
4α2 − 4α+ 1 = 1. Qed.
——————————

Ok, it is about time to write down the table
with six values for the exponential curve
f(t) = eτt/2 · eiπαt.
Here we go, for the circular multiplication we
use the property jα = α;

f(0) = e0 · e0 = 1

f(1) = eτ/2 · eiπα = (2α− j2) · −(2α− 1) = −j2

f(2) = eτ · e2iπα = j · 1 = j

f(3) = e3τ/2 · e3iπα = (2α− 1) · −(2α− 1) = −1
f(4) = e2τ · e4iπα = j2 · 1 = j2

f(5) = e5τ/2 · e5iπα = (2α− j) · −(2α− 1) = −j
f(6) = e3τ · e6iπα = j3 · 1 = 1

So the period is 6, ∀t ∈ R f(t+ 6) = f(t).

Another way of calculating these values is via
remarking that since f(t) is an exponential
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curve it has the property that for k ∈ N

f(k) = eθk = f(1)k so that f(k) = (−j2)k

and using j3 = 1 we can break down the higher
powers of j. Let’s do it

f(0) = (−j2)0 = 1
f(1) = (−j2)1 = −j2

f(2) = (−j2)2 = j4 = j
f(3) = (−j2)3 = −j6 = −1
f(4) = (−j2)4 = j8 = j2

f(5) = (−j2)5 = −j10 = −j
f(6) = (−j2)6 = j12 = 1

You see: both methods give the same results.
——————————

Now we do the same for the complex multiplication
on C3. In the update of 18 Jan 2014 about
a new Cauchy integral I already made a table with
the factors of the exponential curve listed.
Let me simply cut & paste it here:

t f(t) etτ/2 etiπα

0 1 1 1
1 j 2α+ j −(2α− 1)
2 j2 j2 1
3 −1 2α− 1 −(2α− 1)
4 −j −j 1
5 −j2 2α− j2 −(2α− 1)

We observe the beautiful behaviour of the factor
etiπα in the last column:
It alternates between 1 (that has determinant plus 1)
and −(2α− 1) (that has determinant minus 1).
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As an example of how stuff works let’s check f(5):

f(5) = e5τ/2 · e5iπα =

(2α− j2) · −(2α− 1) = −(4α2 − 2α− j22α+ j2) =

−(4α− 2α− 2α+ j2) = −j2

Let’s also check f(1);

f(1) = eτ/2 · eiπα =

(2α+ j) · −(2α− 1) = −(4α2 − 2α+ 2jα− j)
1
=

−(4α− 2α− 2α− j) = j

Of course with the complex multiplication the
number α behaves slightly different, now

it’s basic properties used in
1
= are

α2 = α
jα = −α

It now makes no sense at all to make a second
list and see if the outcome is the same because
already f(1) = j contrary to the circular
multiplication where f(1) = −j2.
This small difference is caused by the fact
that for the complex multiplication in R3

the successive powers of j automatically go
through the pluses and minuses of all basis
vectors because of j3 = −1.
——————————

Before we go to the two five-dimensional
exponential curves I would like to write
down the sphere-cone equation for C3.
I do that because I do not have a good
proof that the second factor eiπαt is
an exponential circle.
Yet the way the sphere-cone equation looks
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suggests strongly that indeed these are
exponential circles.
The oldest sphere-cone equation is the
equation for the unit circle in C
namely

zz = 1 where z ∈ C

and everybody knows that
(x+ iy)(x− iy) = x2 + y2 = 1 defines
the Euler circle eit.

Ok, let’s write it down for both multiplications
at the same time, of course when taking the
conjugate stuff is different. So kepp that
in mind.
For Z ∈ C3 write

Z = X + iY with X,Y ∈ R3 so that

Z = X − iY

[Again: X depends on the actual style
of multiplication, complex or circular.]
The sphere-cone equation now becomes

ZZ = 1 ⇐⇒
(X + iY )(X − iY ) =

XX + Y Y + i(Y X −XY ) = 1

That would give a system of two equations{
XX + Y Y = 1

XY −XY = 0

The second equation says that XY = XY and
that is only possible if XY = XY so we want
to know when this is true in R3.

On the complex plane C a number z is also it’s own
conjugate z iff z ∈ R because the imaginary
component must be zero on C.
In R3 the situation is completely different;
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Case 1: Circular conjugate.
For X = x+ yj + zj2 the conjugate is given by
X = x+ zj + yj2. Hence X = X iff y = z,
so when both imaginary components are equal.
If we use the very important pullback principle
that is the map φ : R3 −→ C we observe

φ(j + j2) = φ(j) + φ(j2) = e2iπ/3 + e4iπ/3 = −1 ∈ R

And since the beautiful science known as math has all
that internal coherence in it, the conjugates on R3

nicely relate to the conjugates on C via the pullback φ.

Case 2: Complex conjugate.
For X = x+ yj + zj2 the conjugate is given by
X = x− zj − yj2. Hence X = X iff y = −z,
so when both imaginary components have opposite sign.
For the 3D complex multiplication we have j3 = −1 and if
we pull that back to C we have φ(j) = eiπ/3 and φ(j2) = e2iπ/3.
And the only linear combinations of j and j2 that make this a
real number are j − j2 or −j + j2.

So now we know when XY −XY = 0 for X,Y ∈ R3.

This gives hope that indeed the second
factor with iπα in the exponent is indeed an
exponential circle but for the time being I would
like some more additional clues & a perfect
proof.
——————————

One day later: problem solved; the stuff
known as f(t) = eiπαt is indeed a circle.
All you need is to realize that α2 = α, well
we have seen the projective nature of α before.
After my humble opinion the projective behaviour
of α (and also τ) make the higher dimensional
complex numbers perfect candidates for quantum
mechanics.
Anyway, let P be any projection such that
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P 2 = P , in that case
etP = 1 + P

(
et − 1

)
If you have never found that, it is extremely
easy to prove using the standard definition
for the exponential function

etP =
∞∑
n=0

tnPn

n!
= 1 + P

∞∑
n=1

tn

n!
= etc etc.

Now we will do exactly that for eiπαt,
here we go:

eiπαt =
∑∞

n=0
(iπαt)n

n! =

1 + α
∑∞

n=1
(iπt)n

n! =

1 + α(eiπt − 1)

Of course only professional professors in
math will deny this is a circle, but hey: they
live their lives & I live mine...
But let us not get emotionally disrupted by a
bunch of overpaid incompetents. Because we
are now going to calculate the middle point
(the center) of this exponential circle.
That is very easy since C3 is also
a vector space and if you know the coordinates
of two opposite points of a circle, all you have
to do is take the average of these two points.
Since the period is 2, f(t+ 2) = f(t) we
can take the average of f(0) = 1
and f(1) = 1− 2α. That gives

1 + (1− 2α)

2
= 1− α

Why the hell would such a center be important
to calculate? Well we now have solved nicely
and without using machines that eiπαt is
an exponential circle.
But that creates a new unsolved problem:
Why do all exponential circles and curves
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always have a non-invertible number as
their center?
——————————

Let’s sum up what we found until now:
Two exponential circles in R3, written
as f(t) = eτt where τ = log j for
the circular multiplication with j3 = 1 and
τ = log j2 for the complex multiplication
with j3 = −1.

Going from R3 to C3 we found two
more exponential circles, but now related
to the numbers α, written as g(t) = e2iπαt.
An alternative representation using the
property α2 = α gives us

g(t) = 1 + α
(
e2iπt − 1

)
If we divide both exponents by 2 and we
multiply the f and g circles we get
two new exponential curves (they cannot
be circles) and these can be written as

h(t) = eθt = e(τ/2+iπα)t

and this curve h(t) has the property that
it passes through all plusses and minussus
of the basis vectors; so through (±1, 0, 0),
(0,±1, 0) and (0, 0,±1).
——————————

Exponential circles and curves in R5 and C5.
Both numbers α belonging to the circular and
complex multiplication on C5 give an
exponential circle namely

f(t) = eiπαt.

Here C5 = R5 + iR5, these f(t) have most of the
time an ’imaginary component’ related to the i that
turns R5 into a 10-dimensional structure C5.
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The α numbers are just like in R3 given by
the squares of all the basis vectors {1, j, j2, j3, j4}
where we make the usual identification like j = (0, 1, 0, 0, 0).
Let me skip the calculation, you can add
the squares for yourself if you like.
The circular multiplication has

α =
1 + j + j2 + j3 + j4

5

and the complex version has

α =
1− j + j2 − j3 + j4

5
.

It would be an important but easy exercise
to write out all the details in order to prove that
also in R5 we have

α2 = α

so that just like in R3 we have, with the
help of Leonhard Euler, the result that

eiπαt = 1 + α
(
eiπt − 1

)
——————————

Now we turn to R5, how did I solve that
relatively hard problem? Because all I had was that
numerical output from an internet applet for the log
of a matrix.
Well, with my hand-calculator I just looked at the
quotient of the numbers and that looked familiar:
That quotient was the negative root of the golden
ratio. So we repeat from the update from 20 Jan of
this year the golden ratio:
As the small stands to the larger part, so
stands the larger part to the whole. Or, as
fractions with s = small and g = the greater part

g

s
=

g + s

g
so that g2 = sg + s2
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Solving this gives the two golden ratio’s

g =
1±

√
5

2
s

The factor that relates the small and larger
part of the golden ratio is now found back in
log j2 and log j.
Also in R5 the determinant has to
be one so therefore we need to take the log of j2

for the complex multiplication (with j5 = −1).
Below you see a picture with a screen shot with the results for log j2.

As you see if you evaluate the quotient

Figure 1: The log of j2 (done with a matrix applet)

−0.660653

1.068959
≈ −0.618034 where also

1−
√
5

2
≈ −0.618034

Of course it is important to remark that
while I take the negative golden ratio, you can
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also use the positive golden ratio because they
are easily related via

1−
√
5

2
· 1 +

√
5

2
= −1

So what will the number τ be? Well in R3 I did
put in all the difficult stuff into the 3D τ in order
to get a sleek eτt that has a period in time of 3
and a spatial period of 3τ meaning

∀t∈ R, eτ(t+3) = eτt and ∀X∈ R3, eX+3τ = eX

But in R5 it is better to keep τ as simple &
sleek as possible so that we later can scale the ’speed
of time’ in order to get a period in time of 5.
So the next version of a number τ does not
have eτ = j2 for the complex multiplication,
or eτ = j for the circular multiplication.
But later we will correct the ’speed of time’.
The relevant detail is of course that the ratio’s
between the four imaginary components is respected!

The complex version with j5 = −1 gives a τ of

τ =
1−

√
5

2
j + j2 + j3 +

1−
√
5

2
j4

The circular version with j5 = 1 gives a τ of

τ = j +
1−

√
5

2
j2 − 1−

√
5

2
j3 − j4

It is important to understand why both versions of
τ look like the look. If we use the pull back
map φ : R5 −→ C we observe that for both τ
we have that φ(τ) = purely imaginary on C.
Suppose that φ(τ) = ai, in that case the
period of the exponential curve equals 2π/a, this
is directly caused by the fact that all exponential
circles and curves run their curve with a constant
speed. Just like the Euler exponential circle f(t) = eiπt

is done with a constant speed of π length units/ second.
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Now we proceed with calculating the pull back of τ ,
first for the complex multiplication:

φ(j) = eiπ/5, φ(j2) = e2iπ/5, φ(j3) = e3iπ/5 and φ(j4) = e4iπ/5

We observe that the cosine parts of j + j4 and of j2 + j3

cancel out so that φ(τ) will not have a real part.
Therefore, written in degrees, i.e. 180◦/5 = 36◦

φ(τ) =

(
1−

√
5

2
sin 36◦ + sin 72◦ + sin 108◦ +

1−
√
5

2
sin 144◦

)
i

This simplifies further because of symmetry in the
y−axis, namely sin 36◦ = sin 144◦ and sin 72◦ = sin 108◦

Beside the golden ratio there is more ancient
knowledge to be written down:

sin(36◦) =
1

4

√
10− 2

√
5 and sin(72◦) =

1

4

√
10 + 2

√
5

And if we plug that all in and divide by i we get

φ(τ)

i
=

1−
√
5

2
· 1
2

√
10− 2

√
5 +

1

2

√
10 + 2

√
5

So now we have the a in φ(τ) = ai.
The period in time T for eτt now becomes T = 2π/a or

T =
4π

1−
√
5

2 ·
√

10− 2
√
5 +

√
10 + 2

√
5

Hence
eτ(t+T ) = eτt where eτT = 1 and T ≈ 5.344796661

Of course, if you want, you can use eτt as your
exponential curve with a period in time of size T .
But a last small modification will give the result that
I prefer namely

f(t) = eτtT/5 because now

f(t+ 5) = eτ(t+5)T/5 = eτtT/5+τT = f(t)

This is a thundering result because this goes through
all the basis vectors via multiplication with j2,
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recall our τ = log j2 because the determinant
must be one. Just look:

f(0) = 1 = (1, 0, 0, 0, 0)
f(1) = j2 = (0, 0, 1, 0, 0)
f(2) = j4 = (0, 0, 0, 0, 1)
f(3) = −j = (0,−1, 0, 0, 0)
f(4) = −j3 = (0, 0, 0,−1, 0)

f(5) = 1 etc etc

I would like to skip the same calculus for the
circular multiplication (with j5 = 1)
because it is so similar. Beside that, in case
you need exponential curves with the circular
multiplication it is always better to do it
yourself because only that burns it better into
your brain...
——————————

At the end of this update I want to look at the
sphere-cone equation on R5 and show you that
the two exponential curves are a solution to that equation.
Recall on C the name is not sphere-cone equation
but something like circle equation.
Any it is this one:

zz = 1 has solution x2 + y2 = 1 or eit

On R5 it is
XX = 1

But if you write that all out, you will see that
what you are left with is basically a two-
dimensional thing. If you add another equation
adding the restriction it has to be in the
4D hyperplane that goes through all the
relevant basis vectors, finally you are
left with a one-dimensional curve.
So we add the extra restriction

x0 + x1 + x2 + x3 + x4 = 1 circular multiplication

x0 − x1 + x2 − x3 + x4 = 1 complex multiplication
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The reason that you need to add more restrictions
is very simple: If you write out all the details
in XX you will find only 3 different equations.
And that is not enough to guarantee a one
dimensional solution...
Let me, once more, write down the conjugates for
all powers of j for the circular & complex
multiplication:

circular complex
j = j4 j = −j4

j2 = j3 j2 = −j3

j3 = j2 j3 = −j2

j4 = j j4 = −j

Now we look at our circular τ ;

τ = j +
1−

√
5

2
j2 − 1−

√
5

2
j3 − j4

and if we calculate τ we observe

τ = −τ.

This also explains why we have opposite signs in
the circular τ . The complex 5D τ reads

τ =
1−

√
5

2
j + j2 + j3 +

1−
√
5

2
j4

and if we calculate τ we observe

τ = −τ.

This also explains why we do not have opposite
signs in the complex τ .
So for an exponential of the form f(t) = eτt we have

f(t) = f(−t) so that f(t)f(t) = f(t)f(−t) = f(0) = 1

hence it fits the sphere-cone equation XX = 1.
——————————

We close with a few pictures related to exponential circles
and curves.

End of this overview of exponential
circles and curves in R3,C3 and R5
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Figure 2: Leonhard Euler and his exp circle.
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Figure 3: Surface of determinant equal to one.
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Figure 4: Surface of the cone equation equal to zero.
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